LONGWAVE AND WINDOW ADMs FOR CLEAR, BROKEN CLOUD AND OVERCAST SCENES

Natividad Manalo-Smith and Norman G. Loeb

METHOD OF GENERATING ADMs

- Radiance measurements are composited from CERES SSFs (69 RAPS + 9 AT days) into VZA ranges and fixed percentile intervals of selected parameters (e.g. PW, IR emissivity, etc.).
- Compute mean radiance for each combination of parameters.
- To fill in empty bins, apply theoretical LW ADMs whose radiance ratio matrix best matches the observed radiance ratio matrix.

Preliminary Scene Types for CERES-TRMM LW and Window ADMs

ADM Category		Scene Type Stratification	Total
	Ocean	3 Precipitable Water	12
	Occan	4 Vertical Temperature Change	
		3 Precipitable Water	
Clear	Land	4 Vertical Temperature Change	36
		3 Surface Emissivity	
		3 Precipitable Water	
	Desert	4 Vertical Temperature Change	36
		3 Surface Emissivity	
Broken		3 Precipitable Water	
Cloud Field	Ocean/Land	6 ΔT (Sfc-Cloud)	288 (O)
(4 intervals)		4 IR Emissivity	288 (L)
Overcast	Occan	3 Precipitable Water	
	Ocean +	6 ΔT (Sfc-Cloud)	108
	Land	6 IR Emissivity	

Variation of Overcast (Ocean & Land) LW ADM with AT(Sfe-Cloud Eff. Temp), PW, & IR Emissivity DAY RAPS/AT (Val R4c)

Precipitable Water: 0.000 - 2.452

Variation of Overcast (Ocean & Land) LW ADM with AT(Sfe-Cloud Eff. Temp), PW, & IR Emissivity DAY RAPS/AT (Val R4c)

Variation of Overcast (Ocean & Land) Window ADM with AT(Sfe-Cloud Eff. Temp), PW, & IR Emissivity

DAY RAPS/AT (Val.R4c)

Variation of LW ADMs for Broken Cloud Fields (Ocean) with AT(Sfc-Cloud Eff. Temp), PW. & IR Emissivity

Variation of LW ADM for Broken Cloud Fields (Land) with Emissivity AT(Sfc-Cloud Eff. Temp), PW, & IR

Variation of LW ADMs for Broken Cloud Fields (Ocean) with AT(Sfc-Cloud Eff. Temp), PW. & IR Emissivity

Variation of LW ADMs for Broken Cloud Fields (Land) with AT(Sfc-Cloud Eff. Temp), PW. & IR Emissivity

Variation of Clear Sky (Ocean) LW/Window ADM and Vertical Temperature Change DAY RAPS/AT (Val_R4c) with PW

Variation of Clear Sky (Land) LW/Window ADM with PW and Vertical Temperature Change DAY RAPS/AT (Val_R4c)

Variation of Clear Sky (Desert) LW/Window ADM with PW and Vertical Temperature Change DAY RAPS/AT (Val_R4c)

Variation of Clear Sky (Desert) LW ADM with PW,

SUMMARY OF RESULTS

OVERCAST

- ADMs exhibit more significant variation with IR emissivity than with PW or $\Delta T_{(sfc\text{-cld})}$
- Anisotropy increases with increasing PW, $\Delta T_{(sfc-cld)}$ and decreasing cloud emissivity.

BROKEN CLOUD FIELDS

- Anisotropy increases as the cloud fraction and the vertical temperature change increase. ADMs show more variation with IR emissivity and less variation with T_(sfc-cld) or PW.
- Land scenes are more anisotropic than ocean scenes.

SUMMARY OF RESULTS

• BROKEN CLOUD FIELDS (cont.)

 As cloud fraction increases, so does the ADM variation with cloud emissivity.

CLEAR

- Ocean ADMs exhibit little dependence on the vertical temperature change.
- Anisotropy increases with PW for all surface types.
- ADMs for clear land and desert scenes exhibit increasing anisotropy with increasing vertical temperature change.